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1.  Introduction

Breast cancer is becoming an increasingly severe health problem worldwide (Oliver et al 2010). Clinical data 
show that only early diagnosis and treatment can reduce its mortality rate (International Agency for Research 
on Cancer 2012). Many technologies that integrate mammography and computer-aided diagnosis have been 
developed, and are designed to better support doctors and automatically obtain early diagnostic results with 
greater accuracy (Irwig et al 2004, Malich et al 2006, Chhatwal et al 2009). Supervised learning models such as 
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Abstract
The prerequisite for establishing an effective prediction system for mammographic diagnosis is the 
annotation of each mammographic image. The manual annotation work is time-consuming and 
laborious, which becomes a great hindrance for researchers. In this article, we propose a novel active 
learning algorithm that can adequately address this problem, leading to the minimization of the 
labeling costs on the premise of guaranteed performance.

Our proposed method is different from the existing active learning methods designed for the 
general problem as it is specifically designed for mammographic images. Through its modified 
discriminant functions and improved sample query criteria, the proposed method can fully 
utilize the pairing of mammographic images and select the most valuable images from both the 
mediolateral and craniocaudal views. Moreover, in order to extend active learning to the ordinal 
regression problem, which has no precedent in existing studies, but is essential for mammographic 
diagnosis (mammographic diagnosis is not only a classification task, but also an ordinal regression 
task for predicting an ordinal variable, viz. the malignancy risk of lesions), multiple sample query 
criteria need to be taken into consideration simultaneously. We formulate it as a criteria integration 
problem and further present an algorithm based on self-adaptive weighted rank aggregation to 
achieve a good solution.

The efficacy of the proposed method was demonstrated on thousands of mammographic images 
from the digital database for screening mammography. The labeling costs of obtaining optimal 
performance in the classification and ordinal regression task respectively fell to 33.8 and 19.8 percent 
of their original costs. The proposed method also generated 1228 wins, 369 ties and 47 losses for the 
classification task, and 1933 wins, 258 ties and 185 losses for the ordinal regression task compared to 
the other state-of-the-art active learning algorithms.

By taking the particularities of mammographic images, the proposed AL method can indeed 
reduce the manual annotation work to a great extent without sacrificing the performance of the 
prediction system for mammographic diagnosis.
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support vector machines (SVM) have been extensively employed in diagnosis technologies for mammography 
and are able to bridge the semantic gap between mammograms and their information regarding diagnosis 
(Gayathri et al 2013). In general, the prerequisite for training an accurate supervised learning model is a large 
amount of labeled data. Therefore, this requires abundant samples of mammographic images with their 
corresponding labels provided by radiologists. However, in practical settings, first-hand mammographic images 
are often unlabeled, and the extensive annotation work required is expensive, time-consuming and requires a 
vast amount of specialized knowledge.

Recent progress in active learning (AL) algorithms can alleviate this problem by minimizing the labeling 
costs. As a semisupervised learning method, AL can intelligently choose small ‘valuable’ subsets from the entire 
dataset using a specific sample query criterion (SQC) and thus may potentially be used to develop accurate pre-
diction models with less labeling by domain experts required (Panda et al 2006, Settles 2012). However, for the 
problem of mammographic diagnosis, the existing AL algorithms designed for general problems cannot be 
directly utilized because mammographic diagnosis has two particularities:

	(1)	� Existing AL algorithms assume that the unlabeled samples at hand are independent. For the 
mammographic diagnosis problem, this assumption may not be valid. There is a definite correlation 
between two mammographic images because these two images may be of the same suspicious lesion 
from different views, e.g. the mediolateral view (MLO) and the craniocaudal view (CC), which share 
the same label and common structural information. A previous study (Gupta et al 2006) of supervised 
learning in mammographic diagnosis indicated that their classification model incorporating both 
views performed marginally better than the model including only one view. Therefore, we also believe 
that the results of AL algorithms may be further enhanced if the two-view of mammographic imaging 
is considered.

	(2)	� Mammographic diagnosis may be regarded as a binary classification task if the user only focuses on the 
pathological type of each image (mass or normal tissue). However, for the mammographic diagnosis, 
the researchers would also like to obtain a learning model that can estimate the malignancy risk of 
breast cancer. This article suggests that this task can be defined as an ordinal regression task rather 
than a multiclass classification task or an ordinary regression task, because the histological grade is 
defined on an arbitrary scale in which only the relative ordering between different values is significant. 
To the best of our knowledge, no related study has combined ordinal regression and AL algorithms. 
Although there are some similarities between ordinal regression and multiclass classification, the SQC 
specifically designed for the latter is not appropriate for the former. The reasons for its inapplicability 
are explained in the following sections. In short, this paper suggests that the selected samples for the 
ordinal regression model must meet at least two SQCs simultaneously, viz., uncertainty and diversity.

Focusing on these issues, we propose a novel AL algorithm specifically designed for mammographic images, 
termed ‘mammographic diagnosis-based active learning (MDAL)’, which is the major contribution of this the-
sis. MDAL can fully utilize the combining of information from multiple mammographic views by its redefined 
discriminant functions and modified SQC. Meanwhile, to be able to extend the AL method algorithms to not 
only classification but also the ordinal regression task, MDAL must be designed to contain more than one SQC, 
and we formulated the integration criteria strategy (ICS) in the process of MDAL as a rank aggregation problem 
with self-adaptive weighting and introduced an improved Markov chain to solve this problem, which guaranteed 
that the selection of mammographic images in MDAL were both representative and informative.

Several comparative experiments on a large database of mammographic images from DDSM, with 900 his-
tograms of oriented gradients (HOG) (Chris Rose et al 2006),were also conducted to demonstrate that users can 
establish a better prediction model for mammographic diagnosis with far less annotation work by employing 
MDAL. Moreover, this specially designed MDAL has outperformed state-of-the-art AL methods in both classifi-
cation and ordinal regression tasks for mammographic diagnosis.

2.  Related work

2.1.  Active learning
The process of AL algorithms is described in figure 1 (see Settles (2012) for more information). In each iteration, 
the AL algorithm selected the most valuable samples from an unlabeled dataset to query labels using its 
corresponding SQC. The newly labeled samples were added to a labeled dataset and updated the model of the 
SQC for the next iteration. According to the corresponding SQC with different definitions of ‘valuable’, the 
existing AL algorithms were divided into three categories: representativeness, informativeness and ambiguity 
measure-based. The AL algorithms in the first category relied on the native data structure, and the samples that 
represented the majority of the samples were regarded as the most representative, e.g. TED (Yu et al 2006b), 
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MAED (Cai and He 2012), cluster (Dasgupta and Hsu 2008b), density (Jiang and Qing-Yu 2015) and diversity 
(Demir et al 2011). The AL algorithms in the second category always selected the samples that were the closest 
to the decision boundary or able to impart the greatest change to the current mode, e.g. margin sampling (Lewis 
and Catlett 1994), estimated error reduction (Roy and McCallum 2001), entropy and expected gradient length 
(Settles et al 2008). The final category selected high-quality samples based on the controversy of multiple learning 
models, e.g. multiple-view (Muslea et al 2006) and query by committee (Freund et al 1997). In addition, recent 
studies have developed a new form of AL algorithm, termed multiple query criteria active learning (MQCAL). 
By contrast to conventional AL methods, the MQCAL employs more than one SQC, and only the samples that 
simultaneously meet all of the criteria are selected for labeling (Huang et al 2010). According to the different ICSs 
used for combining all of the complementary information for each involved SQC, typical MQCAL algorithms 
included MCBAL (Shen et al 2004), DUAL (Donmez et al 2007) and QUIRE (Huang et al 2010). Our proposed 
MDAL can be regarded as an ad hoc MQCAL with special ICS.

2.2.  AL for ordinal regression
All papers cited above were specific to the binary classification problem. However, the practical demands of AL 
algorithms are not limited to the above scenarios, such as AL for regression and AL for multiclass classification. 
Three studies implemented AL algorithms in regression problems: linear regression (O’Neill 2015), kernel 
ridge regression (Douak et al 2013), and logistic regression (Schein and Ungar 2007). Three additional studies 
proposed a combination of AL algorithms and multiclass classification (Joshi et al 2009, Demir et al 2011, Guo 
and Wang 2015). To the best of our knowledge, no related study has yet combined ordinal regression and AL 
algorithms.

As a variation of the one-versus-rest (OVR)-based multiclass classification with one extra order constraint, 
ordinal regression is used to predict the behavior of ordinal level-dependent variables (predicted labels) with 
a set of independent variables. In other words, the predicted labels in ordinal regression not only represent the 
different types of independent variables as multiclass classification but also their ranking or order (Winship and 
Mare 1984). As for the mammographic diagnosis problem, its predicted label is the degree of malignancy risk of 
mammary tissue, and thus the application of ordinal regression in mammographic diagnosis problems is more 
persuasive than multiclass classification.

Assume a learning problem that involves n samples xi (i ∈ [1,2,…, n]) with their possible r categories  
([c1, c2, …, cr]). The ordinal regression and multiclass classification model based on logistic regression are then 
determined by solving the following formulas (1) and (2), more detailed information about the abbreviation and 
notations in this paper can be found in the appendix.




ln
(

P(y�c1)
P(y>c1)

)
= ln

(
π1

π2+···+πr

)
= b1 + w1X1 + w2X2 + · · ·+ wpXp

ln
(

P(y�c2)
P(y>c2)

)
= ln

(
π1+π2

π3+···+πr

)
= b2 + w1X1 + w2X2 + · · ·+ wpXp

. . .

ln
(

P(y�cr−1)
P(y>cr−1)

)
= ln

(
π1+π2+···+πr−1

πr

)
= br−1 + w1X1 + w2X2 + · · ·+ wpXp

�

(1)




ln
(

π1
1−π1

)
= b1 + w11X1 + w12X2 + · · ·+ w1pXp

ln
(

π2
1−π2

)
= b2 + w21X1 + w22X2 + · · ·+ w2pXp

. . .

ln
(

πr
1−πr

)
= b(r−1) + w(r−1)1X1 + w(r−1)2X2 + · · ·+ w(r−1) pXp

� (2)

where X  =  ϕ(x)  =  [X1, X2, …, Xp] denotes the p dimensional feature vector of x in one type of feature space and 
πi is the conditional probability πj  =  P(y  =  cj|X). w, b are the weights of the prediction model that need to be 

Figure 1.  Procedure of the AL algorithm.
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calculated, where b  =  [b1, b2, …, b(r−1)], w  =  [w1, w2, …, wp] for the ordinal regression model and w  =  [w11, w12, 
…, w1p; w11, w22, …, w2p; …; w(r−1)1, w(r−1)2, …, w(r−1)p;] for the multiclass classification model [29, 31].

Although formulas (1) and (2) are similar in structure, the different requirements of w render their hyper-
plane distributions (the black lines) in the discrete sample space entirely different, as presented in figure 2 below. 
Based on the literature (Guo and Wang 2015), this paper suggests that the selection criterion of the AL algorithm 
for the multiclass classification problem should select the samples located at the ‘disputed areas’, which have 
samples with a high degree of uncertainty and could be considered valuable. These disputed areas include the 
intersection of classification uncertain areas (CNAs) either with classification blind areas (CBAs) or with region 
classification compatible areas (CCAs). With regard to the ordinal regression problem, owing to the same w but 
different bj, the hyperplanes in its sample space are parallel to one another, which indicates that only several CNAs 
and neither CCAs nor CBAs exist. Therefore, the AL algorithm designed for multiclass classification based on 
these three areas is unusable in the ordinal regression task.

Inspired by the literature (Guo and Wang 2015), this article suggests that an appropriate AL algorithm for the 
ordinal regression should have two simultaneous sample query criteria—uncertainty and diversity. The former 
criterion guarantees that the selected samples will be located as close to the hyperplanes as possible, and the other 
ensures a certain number of selected samples around each hyperplane rather than samples around only one 
hyperplane. Consequently, the AL algorithm for ordinal regression is an MQCAL problem. The uncertainty and 
diversity-based sample query criteria should be efficiently combined by one ICS, and only the samples that meet 
both the diversity and uncertainty criteria are selected for querying labels.

2.3.  AL in mammographic diagnosis
Few research studies have considered the perspective of applications of AL algorithms in medical tasks, not 
to mention mammographic diagnosis. In a recent article (Zhou et  al 2017), AL was introduced for use in 
convolutional neural networks (CNN) for biomedical image analysis and was demonstrated to perform well 
in three different biomedical imaging applications. Another work (Zhu et al 2014) introduced a constrained 
submodular optimization-based AL for the scalable histopathological image analysis, which considered the 
diversity among selected histopathological imaging samples. To the best of our knowledge, only one paper (Hoi 
et al 2006) included both AL and mammographic diagnosis, presenting a framework for ‘batch mode active 
learning’ that applied the Fisher information matrix. However, that study merely treated the mammographic 
image database as one set of data that was used for testing their general methods and did not focus on the 
particularities of mammographic diagnosis itself.

3.  Approach

Three key points in the MDAL process are (1) the modification of the two-view classification and ordinal 
regression, (2) the redefinition of SQC for two-view binary classification and ordinal regression, and (3) the rank 
aggregation for combining each involved SQC with self-adaptive weights.

3.1.  Problem definition
Regardless of the repeated iteration process, when considering only one iteration t in the MDAL process, the 
currently unlabeled dataset is denoted as U(t), which stores |U(t)| pairs of two-view mammographic image 

samples u(t)
n  in the form of a feature vector, where u

(t)
n   =  [x(t)

CC n, x(t)
MLO n] (n ∈ [1,...,|U(t)|], and |.| is a function 

Figure 2.  The different discrete sample spaces with hyperplanes based on multiclass classification (left) and ordinal regression 
(right).
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used to calculate the length of an array). In addition, the existing labeled dataset is denoted A(t−1), obtained 

from the previous iteration. For each sample in A(t), a
(t)
m   =  [x(t)

CC m, x(t)
MLO m, ym] (ym  =  {1, −1} for a classification 

task or ym  =  {1,2,3,4,5} for an ordinal regression task). With one SQC, the AL algorithm can select c_n pairs of 
image samples Q(t) with the highest value from U(t) in every iteration and reconstitute a newly labeled dataset 
A(t)  =  A(t−1) ∪ Q(t) that is used to train a new learning model h(t) and update the SQC for the next iteration t  +  1. 
The purpose of the AL method is to acquire a high-performance h(t) with the fewest iterations (labeling costs are 
positively correlated with the number of iterations).

3.2.  Modification of the two-view classification and ordinal regression
Because mammographic diagnosis is a two-view learning task, both ordinal regression and classification problems 
must learn two target functions by searching two optimal hypotheses (hCC and hMLO). For each mammographic 
image sample (x  =  [xCC, xMLO]), its diagnostic information, including pathological type and histological grade, 
can be accurately predicted if these two hypotheses provide the same predictions (h(x)  =  hCC(x)  =  hMLO(x)). 
Conversely, if the predictions of one sample x provided by these two hypotheses are different, the predicted result 
y* of the hypothesis with the higher probability will be accepted as the decisive result. The revised discriminant 
function is represented by formula (3):

h (x) = hv (x) , where v = argmax
view∈ CC, MLO

P (y∗view|x, hview) , y∗view = hview(x).� (3)

Then, the problem is translated into a calculation of the predicted probability of each view.
In this paper, a SVM was applied to accomplish the binary classification task, whose discriminant function is 

represented in formula (4):

h (x) = sign
(

wTϕ(x) + b
)

.� (4)

Then, the probability P(y*|x, h) can be replaced by the distance between the sample x and the hyperplane pro-
vided from h as the following formula (5):

P (y∗|x, h) → wTϕ(x) + b

‖w‖
.� (5)

The discriminant function of the ordinal regression is represented by expression (6):

h(x) = argmin
j=1...r

{
j : wTϕ(x) + bj > 0

}
, where br is set to +∞.� (6)

Its probability P (y*|x, h) is equal to the max (π1, π2, π3…...πr), and each πj can be calculated using the 
nonhomogeneous equation (7).




1 −β(b1) −β(b1) . . . −β(b1)

1 1 −β(b2) . . . −β(b2)
... . . .

. . . . . .
...

1 . . . 1 −β(br−2) −β(br−2)

1 1 . . . 1 −β(br−1)

1 1 1 . . . 1



·




π1

π2

...

πr−2

πr−1

πr



=




0

0
...

0

0

1




� (7)

where β(·) is a calculation formula that can be defined as follows: β (a) = ea+wTϕ(x).

3.3.  Redefinition of SQC for two-view binary classification and ordinal regression
Most SQCs can be denoted as the following formula (8):

Q(t)
k =

⋃c_n

e=1
argminc

u∈U(t)

(
f (t)
k (u)

)
.� (8)

The function x*  =  argmine
x∈U  (f(x)) in this formula indicates that x* is equal to the element x in U whose 

value f(x) is the eth lowest. For our sample selection problem, f (t)
k  (.) is the kernel function in the SQC used to cal-

culate the score of every unlabeled sample for sample selection according to the existing labeled samples A(t−1). 

Different AL algorithms have different f (t)
k  (.) functions. In this paper, the involved SQCs included uncertainty-

based and diversity-based criteria, and we defined f (t)
1  (.) as the kernel function of uncertainty-based SQCs and 

f (t)
2  (.) as the kernel function of diversity-based SQCs.

The uncertainty-based SQC seeks to select some unlabeled samples from the unlabeled sample pool U(t) that 
have the least certainty. The uncertainty-based SQC relies on the learning model h based on the work of previ-
ous iterations, and the learning model is accurate only when there is a certain number of labeled samples in A. 
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Accordingly, the uncertainty criterion generally performs well after the middle stage of the AL process (Huang 
et al 2010). In MDAL, which involves two learning models from different perspectives, the kernel function of its 
corresponding uncertainty criterion may be redefined by formula (9):

f (t)
1 (u) = max (P (y∗CC|u, hCC) , P (y∗MLO|u, hMLO)) , where hCC, hMLO are trained by A(t−1)� (9)

which indicates that one mammographic image can be defined as informative if the confidence of the prediction 
from its decisive result is low. For the ordinal regression task, hCC, hMLO should be calculated through the formula 
(6), and hCC, hMLO for the binary classification task can be obtained from the formula (4).

The diversity-based SQC selected diverse samples. The performance of the diversity-based SQC was gener-
ally better than that of the uncertainty-based SQC in the early stage of the AL process, but in the late stage, the 
performance of the uncertainty-based SQC was superior. That is because that performance did not involve the 
update to the learning model, and its sample selection was only associated with the distribution of all samples 
(Huang et al 2010). The diversity-based SQC in MDAL is defined according to formula (10):

f (t)
2 (u) = max

a∈A(t)

(
�(uCC, aCC) + �

(
uMLO, aMLO

))
, where�

(
xi, xj

)
= cos−1


 κ

(
xi, xj

)
√
κ (xi, xi)κ

(
xj, xj

)


� (10)

where κ is the calculation of the Euclidean distance. The formula indicates that an image sample is the most 
representative if the distance between itself and its nearest point from both the CC and MLO view is the maximum 
(minimum cosine of the angle).

3.4.  The rank aggregation for combining each involved SQC with self-adaptive weight
MDAL is essentially an enhanced version of the MQCAL, thus it is important to select an ICS. Common ICSs in 
MQCAL, which are used to combine several SQCs, take two forms: a parallel form and a serial form. In parallel-
form MQCAL, each involved SQC is combined based on a weighted-sum weighting parameter λ, and the original 
problem of sample selection is often implemented as an optimization problem, as described below. Serial-form 
MQCAL employs each SQC to select a certain number cj of samples from the selection results of previous SQCs 
in sequence as a multi-layer filter. Expressions of the combination of uncertainty- and diversity-based SQCs are 
represented by formulas (11) and (12) (Shen et al 2004):

Q(t)
parallel =

⋃c_n

e=1
argmine

u∈U(t)

(
λf (t)

1 (u) + (1 − λ) f (t)
2 (u)

)
� (11)

Q(t)
serial =

⋃c_n

e=1
arg mine

u∈Q∗
uncertainty

(
f (t)
2 (u)

)
, where Q∗

uncertainty =
⋃c_n∗

e=1
arg mine

u∈U(t)

(
f (t)
1 (u)

)
� (12)

where the weighting parameter λ and the parameters of the selection number c_n* in the inner layer may 
be regarded as the empirical parameters used to balance each involved SQC because each SQC has different 
mathematics principles and score ranges.

The ICSs used in MDAL were neither the parallel form nor the serial form. Instead, this paper introduces our 

proposed rank aggregation-based ICS. In each iteration of the AL process, we obtained the rank list R(t)
k  and the 

score list S(t)
k  of the currently unlabeled dataset U(t) from each SQC f (t)

k  (.), and this rank aggregation-based ICA 

assumed that the samples that ranked high on the aggregated rank list R(t)
agg should be selected for querying labels 

as formula (13):

Q(t)
RMQCAL =

⋃c_n

th=1
arg minth

u(t)
n ∈U(t)

R(t)
agg(u

(t)
n ), where R(t)

agg = arg min
R(t)

1

L

L∑
k=1

ωkK(R(t), R(t)
k )� (13)

where ω(t)
k  is the self-adaptive weight of each f (t)

k  (.), and K is the calculation of Kendall’s tau or Spearman’s 

footrule distance (Lin 2010).
The steps of our rank aggregation-based ICS in MDAL can be denoted as follows:

Input: the number of sample selections in each AL iteration c_n, the remaining unlabeled dataset U(t)

STEP 1: Two score lists of existing unlabeled samples (S(t)
1  and S(t)

2 ) can be obtained via U(t) and formula (14):




S(t)
1 = [ f (t)

1

(
u(t)

1

)
, . . . , f (t)

1

(
u(t)

i

)
, . . . , f (t)

1

(
u(t)

num

)
]

S(t)
2 = [ f (t)

2

(
u(t)

1

)
, . . . , f (t)

2

(
u(t)

i

)
, . . . , f (t)

2

(
u(t)

num

)
]

, where u(t)
i ∈ U∗(t).� (14)
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Then, their corresponding R(t)
1  and R(t)

2  can also be derived.

STEP 2: S(t)
1  and S(t)

2  are normalized and sorted from smallest to largest as S∗(t)
1  and S∗(t)

2 . This paper postulates 
that a good SQC should maximize the difference between the scores of selected and unselected samples. Then, 

the different weights (ω(t)
1  and ω(t)

2 ) behind f (t)
1  (.) and f (t)

2  (.) in the current iteration may be calculated using 

the following formula (15):

ω
(t)
k =

minc_n+1(S∗(t)
k )−minc_n(S∗(t)

k )

max(S∗(t)
k )−minc_n(S∗(t)

k )
, where k ∈ {1, 2}� (15)

where function mine(S) is the value of the element that is the eth lowest in sequence S.
STEP 3: The Markov chain can be applied to realize the rank aggregation (Lin 2010). The transition probability 
matrix TRANMAT(t) must first be calculated, and each element TRANMAT(t)(i, j) is equal to the weighted 

transition probability of a pair of remaining unlabeled samples P(u(t)
i   →  u(t)

j ), where i  ≠  j, and i, j ∈ 1,…, 

num), using formula (16):

TRANMAT(t) (i, j) = P
(

u(t)
i → u(t)

j

)
=




1
num · I

(
2∑

k=1
ω
(t)
k ·

(
I
(

R(t)
k

(
u(t)

i

)
> R(t)

k

(
u(t)

j

) ))
> 0

)
: MC1

1
num · I

(
2∑

k=1
ω
(t)
k ·

(
I
(

R(t)
k

(
u(t)

i

)
> R(t)

k

(
u(t)

j

) ))
> 1

2

)
: MC2

1
num ·

2∑
k=1

ω
(t)
k ·

(
I
(

R(t)
k

(
u(t)

i

)
> R(t)

k

(
u(t)

j

) ))
: MC3

� (16)

where MC1, MC2, and MC3 are three different types of kernels of the Markov chain, and I(.) is an indicator 
function that is equal to one if conditions within the parentheses are satisfied. Then, TRANMAT(t) (i, i) can be 
obtained from formula (17) after all TRANMAT(t)(i, j) values have been calculated:

TRANMAT(t)
(

u(t)
i , u(t)

i

)
= P

(
u(t)

i → u(t)
i

)
= 1 −

∑
i �=j

P
(

u(t)
i → u(t)

j

)

�
(17)

Step 4: Because our proposed method involved only two SQCs, the above transition probability matrix was 
often a large, sparse matrix with several 0 elements. To ensure ergodic results for the transition matrix, a tuning 
parameter t was introduced and treated as follows (18):

TRANMAT∗(t) (i, j) = TRANMAT(t) (i, j)× (1 − tun) +
tun

num� (18)
where tun is typically set to range from 0.01 to 0.15.
Step 5: The stationary distribution of one transition matrix is its principal left eigenvector, which can be 
computed from a regular power-iteration algorithm after transposing the above matrix. The value of each 
element in a stationary distribution may be regarded as a Markov chain score of its corresponding samples. 

Then, we can obtain the final aggregated rank list (R(t)
agg) of R(t)

1  and R(t)
2  by ranking the Markov chain scores 

from large to small. The top c_n samples with high Markov chain scores were collected as Q(i) to query for 
labels.
We also observed that the computation complexity of the early stage of our proposed AL algorithm was too 

high (num is large when t is small). Therefore, it was necessary to remove some samples from U(t) before the 
first step. According to the characteristics of mammographic images, we suggest first selecting samples from the 
ambiguous mammographic images (whose predictions from the CC and MLO models are different), followed 
by unambiguous images, as represented in formula (19):

{
U∗(t) = V , if V �= ∅
U∗(t) = U(t), else

, where V ⊂ U(t), subject to ∀u ∈ V , h(t−1)
CC (u) �= h(t−1)

MLO (u)� (19)

Then, the above formula (14) can be revised to formula (20),



S(t)
1 = [ f (t)

1

(
u(t)

1

)
, . . . , f (t)

1

(
u(t)

i

)
, . . . , f (t)

1

(
u(t)

num

)
]

S(t)
2 = [ f (t)

2

(
u(t)

1

)
, . . . , f (t)

2

(
u(t)

i

)
, . . . , f (t)

2

(
u(t)

num

)
]

, where u(t)
i ∈ U∗(t)� (20)
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which does not contradict the principles of the AL method, but significantly reduces the computation complexity.
Compared with conventional ICSs, this ICS has three advantages. (1) The empirical parameters are no longer 

necessary. The tradeoff used to balance each involved SQC is adaptable. The SQC with the higher contribution will 
be assigned a higher weight. (2) Considering that the contribution of one SQC changes with the stage of the entire 
AL process, the tradeoff is changed from a static to a dynamic state. Then, each SQC may better utilize the respec-
tive advantages and realize the advantages’ complementation. (3) Our proposal has excellent scalability and gen-
erality; any type and number of SQC may be effectively combined; thus, it is ideal for the practical problem here.

3.5.  The entire process of MDAL for mammographic diagnosis
The entire process of our proposed MDAL for mammographic diagnosis is illustrated below, a more intuitive 
display is shown in figure 3.

The entire process of the MDAL algorithm for mammographic diagnosis

Input: The dataset U(0) that contains abundant unlabeled mammographic images with their HOG feature in CC and MLO views and 

the number of samples selected in each iteration c_n.

Repeat

  If the number of iterations t  =  0

  Step 1: Randomly select the first batch of unlabeled samples for labeling as Q(0), A(0)  =  Q(0) and U(1)  =  U(0)\Q(0)

  Else

    If the purpose of mammographic diagnosis is a binary classification task

      Step 1: Train two binary classification models h(t−1)
CC  and h(t−1)

MLO  through A(t−1) and formula (4)

    Else the purpose of mammographic diagnosis is an ordinal regression task

      Step 1: Train two ordinal regression models h(t−1)
CC  and h(t−1)

MLO  through A(t−1) and formula (6)

    End

  Step 2: �Select the samples from U(t) as U*(t) through formula (19); then all the samples in U*(t) may be regarded as the most  

ambiguous.

  Step 3: �From formulas (20), (9), (10) and (14), we can obtain the rank lists and score lists of U*(t), U*(t), A(t−1)  →  R(t)
1 , R(t)

2 , S(t)
1   

and S(t)
2 .

  Step 4: The weights of diversity and uncertainty are calculated by formula (15). S(t)
1  and S(t)

2   →  ω(t)
1  and ω(t)

2

  Step 5: �Using the weighted Markov chain method (formulas (16)–(18)), we can obtain the weighted aggregated rank list and select 

the samples with the top c_n values as Q(t). c_n, ω(t)
1 , ω(t)

2 , R(t)
1 , R(t)

2   →  Q(t)

  Step 6: Request a label of Q(t) from the Oracle; then, A(t)  =  A(t−1) ∪ Q(t) and U(t+1)  =  U(t)\Q(t).

  End

Until: a stopping criterion is applied or |U(t)|  =  0.

  Output: The labeled dataset A(t), which contains far fewer samples than U(0), and the performance of the learning model trained by A(t).

4.  Experiment

4.1.  Experimental settings
Our experiments were conducted using the digital database for screening mammography (DDSM), a resource of 
the mammographic image analysis research community containing approximately 2500 cases. The majority of 
the cases included two images of each breast with their associated information: the assessment of abnormalities 
(0: incomplete, 1: negative, 2: benign, 3: most likely benign, 4: suspicious, 5: highly suggestive of malignancy) 
and the projection positions (MLO and CC views), as shown in figure 4 below (Rose et al 2006). For the binary 
classification experiments, 1406 pairs of candidate images were extracted from the DDSM as experimental 
samples, and each pair contained two small mammographic images of the same tissue but from two views. Of the 
pairs, 898 were masses, and the remaining 508 were normal tissue. For the ordinal regression experiments, only 
1330 pairs of samples were available, with 508 normal, 19 benign, 170 most likely benign, 414 suspicious and 219 
malignant. The method for candidate images extraction includes: the image conversion (Chris Rose et al 2006), 
separation of foreground and background based on k-mean and morphological operation, the foreground 
enhancement through histogram equalization, and the candidate images extraction using therandom forest 
given in the paper by Kooi et al (2016).

As part of the process, 900D HOG features (Dalal and Triggs 2005) were extracted from each image. As a 
well-designed feature descriptor, a HOG feature can give a good description of local shape information, and has 
better invariance to changes in transition, rotation, illumination and shadowing, which might be the appropriate 
choice for mammographic images with variform local structure that are prone to interference. Then, owing to 
the high dimensions of the HOG feature, it may require further reduction through PCA (Wold et al 1987).
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It is worth emphasizing that every pair of images is referred to as ‘a sample’ here, and the labeling costs of a 
sample is equal to one.

4.2.  Experimental environments
All operations were executed using MATLAB R2014a software (The Mathworks, Inc., Natick, MA, USA) 
installed on a PC with an Intel Core i3-2100 CPU (3.10 GHz) and 3 GB memory. LibSVM supported by www.
csie.ntu.edu.tw/~cjlin/libsvm/ was applied to train the SVM classification models with polynomial kernels for 
all classification experiments. The ordinal regression models were all trained by the built-in function mnrfit.m 
in MATLAB. All experiments below were repeated a specified number of times. Each time, the corresponding 
experimental samples were randomly divided into a training set with 50% of the samples and a test set with 50% 
of the samples, for the classification tasks, and a training set with 80% of the samples and a test set with 20% of 
the samples for the ordinal regression tasks. It is also worth mentioning that all involved algorithms below were 
uploaded to GitHub. Any reader interested in this can download them from https://github.com/lestel/MDAL.git.

4.3.  Experimental evaluation indexes
For the classification task, AUC (the area under the curve of ROC) and accuracy were used to evaluate the 
performance of the approaches relative to that described in the paper by Huang et al (2010). For the ordinal 

Figure 3.  The entire process of our proposed MDAL algorithm for mammographic diagnosis.

Figure 4.  Five pairs of mammographic images with different assessments and labels in DDSM.
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regression task, this paper uses accuracy and MSE (the mean squared error) as evaluation indexes. A better AL 
algorithm can help the learning model achieve a higher AUC, accuracy, and a lower MSE with fewer labeling costs.

4.3.1.  The learning model for mammographic diagnosis from a single view versus two views
The purpose of this section is to validate the effect on performance if two views are considered in the training 
process of mammographic classification and the ordinal regression model. In this experiment, we termed 
the method, which makes the prediction and trains the model from both CC and MLO views, ‘CC and MLO 
views’ in the figure below. The other methods for comparison include the ‘CC view’ or the ‘MLO view’ (which 
only considers the mammographic images from one view) and the ‘CC or MLO view’ (which regards the 
mammographic images from different views as two unrelated images). All test methods above are used in both a 
classification and an ordinal regression task. The experiment was repeated 30 times, and the mean and standard 
deviation of each method were calculated after the repeated tests.

It may be observed from figure 5 that the passive learning classification performance for mammographic 
diagnosis from both views (AUC  =  0.9680  ±  0.0038, accuracy  =  0.9111  ±  0.0079) yielded a statistically 
significant improvement over the classification performance from CC views (AUC  =  0.9339  ±  0.0093, 
accuracy  =  0.8649  ±  0.0113), MLO views (AUC  =  0.9448  ±  0.0057, accuracy  =  0.8831  ±  0.096), 
and from CC or MLO views (AUC  =  0.9395  ±  0.0057, accuracy  =  0.8740  ±  0.0069). In addition, the 
regression performance was also slightly increased for mammographic diagnosis from both views (acc
uracy  =  0.6011  ±  0.0158, MSE  =  0.7054  ±  0.0571) compared with the regression performance from CC 
views (accuracy  =  0.5554  ±  0.0235, MSE  =  0.8576  ±  0.0731), MLO views (accuracy  =  0.5653  ±  0.0145, 
MSE  =  0.8077  ±  0.0476), and from CC or MLO views (accuracy  =  0.5617  ±  0.0128, MSE  =  0.8304  ±  0.0475). 
In other words, exploiting the characteristics of two views can reliably improve the performance of the learning 
model, thus we employed these two-view-based classification and regression models in the following experi-
ments as the baseline of experimental AL algorithms.

4.3.2.  AL from two views for classification and ordinal regression in mammography
The experiments in this section were designed to validate that our proposed MDAL can indeed greatly minimize 
the annotation work in both classification and regression tasks of mammographic diagnosis. The control 
methods included (1) random, (2) diversity (Demir et al 2011), (3) uncertainty (Lewis and Catlett 1994), (4) 
multiple-view (Muslea et al 2006), (5) MCBAL (Shen et al 2004), and (6) QUIRE (Huang et al 2010). In order 
to ensure the fairness of the experiments, all these contrasting methods made the following improvements: if 
one image in any view is selected by them, then this sample is selected. Methods 2, 3, and 4 were the typical 

Figure 5.  Comparison of the model being trained by single-view or two-view: the figures in the top row are respectively the AUC 
(left) and accuracy (right) of the classification task, and the figures in the bottom row are respectively the MSE (left) and accuracy 
(right) of the ordinal regression task.
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representativeness, informativeness and ambiguity measure-based single criterion AL algorithms, respectively, 
which were also the components of MDAL. Method 5 was the serial-form MQCAL, and its parameters of the 
selection number c_n* was set at 7 here. Method 6 was the parallel-form MQCAL and can be regarded as state 
of the art, whose weighting parameter λ was equal to 1, as presented in the paper by Huang et al (2010). As for 
MDAL, MC2 was selected as the kernel of the rank aggregation process.

The experiments for each method were repeated 30 times, and the mean and standard deviation of perfor-
mance were recorded to generate the curves in figures 6 and 7. Before each experiment, we randomly selected four 
image samples (two masses and two normal tissues) as the initial labeled data set L(1), and only one sample was 
selected for querying labels in each subsequent iteration (c_n  =  1). We also recorded the specific performance 
values at various important moments for each type of evaluation index (when labeled samples accounted for 
5, 10, 15, 20, 30, and 40 percent of all of the training samples at hand), and the best result from each method at 
these moments was highlighted in bold, based on paired t-tests conducted at the 95 percent level in tables 1 and 
3. The comparative results of MDAL, relative to other AL methods for the entire AL process, were also recorded 
in tables 2 and 4, in which the wins, losses, and ties correspond to the performance of MDAL as above, below, or 
equal to the other methods in one iteration. In addition, we recorded the average run time of each method to 
obtain every image that should be labeled in table 5.

The experiment results in figure 6, and tables 1 and 2 elucidate several problems that the majority of the 
involved methods can address better than random selection, which demonstrates the effectiveness of AL. In 
particular, our proposed MDAL has performance advantages over diversity, multiple-view, and uncertainty in 
classification tasks, and these advantages permeate the entire AL process. The reason is that MDAL considers 
the representativeness, informativeness and ambiguity of each unlabeled sample and makes the best of them. 
Although the accuracy of QUIRE and MCBAL was slightly better than that of MDAL in the first 40 selected sam-
ples, their accuracy advantage was not maintained when more mammographic images were selected.

The results of the ordinal regression task in figure  7, tables  3 and 4 indicate that the performance of 
single-criterion-based AL, multiple-view, uncertainty and diversity was much worse than that of MDAL and 
even no better than random selection, which confirmed our view that an appropriate AL algorithm for the 

Figure 6.  Comparison of seven AL approaches to classification AUC (left) and accuracy (right) with a different number of labels.

Figure 7.  Comparison of seven AL approaches in ordinal regression MSE (left) and accuracy (right) with a different number of 
labels.

Phys. Med. Biol. 63 (2018) 115003 (17pp)



12

Y Zhao et al

ordinal regression should have two simultaneous sample query criteria: uncertainty and diversity. Compared 
with the other two MQCAL, QUIRE and MCBAL, MDAL demonstrated significant advantages in accuracy and 
MSE, particularly when the number of labels was more than 10% of the total number of unlabeled samples.

From the perspective of running time, because MDAL involves the diversity calculation of some samples, 
MDAL and diversity were in the same order of magnitude as the running time but far less than QUIRE.

4.4.  Clinical tests
We further investigated the number of labels and the actual execution time of the annotation work with or 
without the assistance of the AL algorithm (here we supposed that similar attention should be paid to each 
labeled image pair). For this purpose, and in accordance with the principle of the proposed MDAL, a program 
was established for clinical tests of the AL method for mammographic image annotation, as displayed in figure 8. 
This program presents the user with one pair of mammographic images from both MLO and CC views in two 
consecutive manners (MDAL and random), and the user feeds back the labels of these images with no extra hints 
until the learning model converges (its accuracy exceeds a threshold: 88% for classification, 60% for ordinal 
regression). In addition, two radiologists from Peking Union Medical College Hospital with two to three years 
of screening experience in mammographic diagnosis were requested to use this program independently (one for 
the classification task and the other for the ordinal regression task). Their number of query labeling before the 
learning model converges (also called labeling cost), average time for sample annotation, the average time of each 
iteration in the AL process and the total time for mammographic image annotation are recorded in table 6.

Table 1.  The AUC and accuracy comparison of MDAL versus the other AL methods in the classification task of mammography images for 
labeling fractions of samples (5%, 10%, ...).

AUC

5% 10% 15% 20% 30% 40%

Mean  ±  SD Mean  ±  SD Mean  ±  SD Mean  ±  SD Mean  ±  SD Mean  ±  SD

Random 0.85  ±  0.07 0.91  ±  0.01 0.93  ±  0.01 0.93  ±  0.01 0.93  ±  0.01 0.94  ±  0.01

Multiple-view 0.90  ±  0.02 0.92  ±  0.01 0.93  ±  0.01 0.93  ±  0.01 0.93  ±  0.01 0.94  ±  0.01

Diversity 0.87  ±  0.02 0.90  ±  0.01 0.90  ±  0.01 0.91  ±  0.01 0.92  ±  0.01 0.93  ±  0.01

Uncertainty 0.83  ±  0.12 0.90  ±  0.09 0.93  ±  0.02 0.93  ±  0.01 0.94  ±  0.01 0.95  ±  0.01

MCBAL 0.89  ±  0.04 0.91  ±  0.01 0.92  ±  0.01 0.93  ±  0.01 0.94  ±  0.01 0.94  ±  0.01

QUIRE 0.90  ±  0.02 0.91  ±  0.01 0.93  ±  0.02 0.93  ±  0.02 0.93  ±  0.01 0.94  ±  0.01

MDAL 0.90  ±  0.01 0.92  ±  0.01 0.93  ±  0.01 0.94  ±  0.01 0.95  ±  0.01 0.95  ±  0.00

Accuracy

Random 0.75  ±  0.03 0.79  ±  0.03 0.81  ±  0.01 0.82  ±  0.02 0.83  ±  0.02 0.84  ±  0.01

Multiple-view 0.72  ±  0.01 0.76  ±  0.01 0.78  ±  0.02 0.79  ±  0.01 0.80  ±  0.01 0.82  ±  0.01

Diversity 0.79  ±  0.02 0.85  ±  0.03 0.82  ±  0.08 0.86  ±  0.09 0.86  ±  0.06 0.87  ±  0.04

Uncertainty 0.78  ±  0.07 0.83  ±  0.04 0.86  ±  0.02 0.88  ±  0.01 0.89  ±  0.01 0.89  ±  0.01

MCBAL 0.82  ±  0.09 0.85  ±  0.02 0.87  ±  0.02 0.88  ±  0.01 0.88  ±  0.01 0.88  ±  0.02

QUIRE 0.83  ±  0.02 0.85  ±  0.01 0.87  ±  0.02 0.87  ±  0.01 0.88  ±  0.01 0.89  ±  0.00

MDAL 0.82  ±  0.01 0.86  ±  0.02 0.88  ±  0.01 0.89  ±  0.01 0.89  ±  0.01 0.90  ±  0.02

Table 2.  Win/tie/loss counts of MDAL versus the other methods in the entire AL process, in the classification task of mammography 
images.

Classification AUC Accuracy

Task Wins Ties Losses Wins Ties Losses

Random 250 24 0 263 8 3

Multiple-view 184 88 2 272 2 0

Diversity 269 5 0 193 69 12

Uncertainty 147 127 0 183 90 1

MCBAL 217 57 0 153 102 19

QUIRE 207 67 0 164 98 12

In All 1274 368 2 1228 369 47
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The results of these clinical tests further demonstrate that the proposed MDAL is beneficial in establishing 
a learning model for mammographic diagnosis. Comparing with the traditional annotation procedure, where 
each sample selection for labeling is random, MDAL can shorten the entire time required for sample annotation 
for both regression and classification tasks. Although the required computation time increased several-fold, the 
time for the entire annotation procedure with MDAL nevertheless decreased by nearly 53 percent compared to 
the traditional method in the classification task and nearly 57 percent in the ordinal regression task, because the 
number of samples required for annotation was drastically reduced.

Table 3.  The MSE and accuracy comparison of MDAL versus the other AL methods in the ordinal regression task of mammography 
images for labeling fractions of samples (5%, 10%, ...).

MSE

5% 10% 15% 20% 30% 40%

Mean  ±  SD Mean  ±  SD Mean  ±  SD Mean  ±  SD Mean  ±  SD Mean  ±  SD

Random 0.91  ±  0.10 0.82  ±  0.05 0.78  ±  0.08 0.81  ±  0.06 0.75  ±  0.06 0.69  ±  0.05

Multiple-view 0.92  ±  0.13 0.81  ±  0.08 0.91  ±  0.07 0.81  ±  0.05 0.78  ±  0.05 0.79  ±  0.04

Diversity 0.99  ±  0.12 0.91  ±  0.02 0.78  ±  0.06 0.81  ±  0.05 0.87  ±  0.04 0.82  ±  0.04

Uncertainty 1.07  ±  0.13 0.87  ±  0.12 0.75  ±  0.11 0.75  ±  0.13 0.76  ±  0.05 0.72  ±  0.05

MCBAL 0.98  ±  0.04 0.81  ±  0.07 0.79  ±  0.06 0.82  ±  0.05 0.78  ±  0.05 0.72  ±  0.05

QUIRE 0.96  ±  0.13 0.90  ±  0.07 0.78  ±  0.07 0.76  ±  0.04 0.67  ±  0.05 0.74   ±   0.04

MDAL 0.99  ±  0.12 0.76  ±  0.08 0.69  ±  0.05 0.65  ±  0.05 0.67  ±  0.06 0.62  ±  0.06

Accuracy

Random 0.54  ±  0.02 0.57  ±  0.01 0.58  ±  0.02 0.55  ±  0.02 0.58  ±  0.01 0.59  ±  0.01

Multiple-view 0.57  ±  0.04 0.58  ±  0.03 0.56  ±  0.02 0.58  ±  0.02 0.59  ±  0.01 0.59  ±  0.01

Diversity 0.50  ±  0.05 0.51  ±  0.01 0.55  ±  0.02 0.54  ±  0.02 0.52  ±  0.01 0.54  ±  0.01

Uncertainty 0.48  ±  0.04 0.54  ±  0.04 0.58  ±  0.04 0.57  ±  0.05 0.58  ±  0.02 0.60  ±  0.02

MCBAL 0.55  ±  0.03 0.59  ±  0.03 0.59  ±  0.01 0.58  ±  0.01 0.59  ±  0.01 0.60  ±  0.02

QUIRE 0.53  ±  0.03 0.55  ±  0.02 0.58  ±  0.02 0.57  ±  0.01 0.60  ±  0.02 0.58  ±  0.02

MDAL 0.54  ±  0.03 0.59  ±  0.03 0.61  ±  0.02 0.61  ±  0.01 0.61  ±  0.01 0.62  ±  0.01

Table 4.  Win/tie/loss counts of MDAL versus the other methods in the entire AL process, in the ordinal regression task of mammography 
images.

Ordinal MSE Accuracy

Regression Task Wins Ties Losses Wins Ties Losses

Random 309 18 69 325 39 32

Multiple-view 302 44 50 304 54 38

Diversity 312 33 51 349 24 23

Uncertainty 300 79 17 379 12 5

MCBAL 311 37 48 276 67 53

QUIRE 265 95 36 300 62 34

IN ALL 1799 306 271 1933 258 185

Table 5.  Comparing the CPU time of MDAL with other methods.

Random Multiple-view Diversity Margin MCBAL QUIRE MDAL

Classification 0.0125 0.1405 0.8125 0.0313 0.0625 14.731 0.7656

Ordinal Regression 0.0625 0.7813 3.9375 0.1094 0.1094 33.81 3.3844
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5.  Conclusion

In this paper, we proposed a novel AL approach, termed ‘MDAL’, which was specifically designed for 
mammographic images.MDAL is different from the AL method designed for general problems as it fully considers 
the two particularities of mammographic diagnosis. Through its modified discriminant functions, improved 
sample query criteria and the novel rank aggregation-based MQCAL framework with self-adaptive weightings, 
MDAL not only further reduced the labeling costs of mammographic images but also extended the AL approach to 
the ordinal regression task. The experiments on the massive mammographic images from DDSM demonstrated 
that, compared with other classical AL and state-of-the-art MQCAL methods, MDAL is able to achieve the most 
optimal results in both the ordinal regression and the classification tasks of mammographic images.

From a clinical perspective, these results are of great significance to the application of MDAL. MDAL can 
largely eliminate radiologists’ burden of annotation work. Numerous unimportant images do not require 
urgent labeling, nor do those images significantly enhance the learning model. The accuracy of manual annota-
tion can also be improved if we can obtain an effective learning model as soon as possible and utilize its opinion.

Our future work will address the three limitations of this paper. First, we will introduce support vector ordinal 
regression (a recent improved version of ordinal regression) to our method to further enhance prediction per-
formance although this improvement is independent of the study of AL algorithms. Second, this study is based 
on the assumption that the radiologist-provided labels are perfect and never incorrect. However, the results of 
experiments are not perfect; the radiologist also makes mistakes in his annotation work, and thus we will also 
evaluate the AL method considering imperfect annotations. Third, considering DDSM is an old database, there 
may exist characteristic differences to the current digital dataset. In the next phase of research, to further verify 
the validity of the algorithm, we will attempt to modify and apply the proposed MDAL into our local self-devel-

oped database that is currently being built.
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Table 6.  Total time spent on mammographic image annotation.

Labeling 

cost

Annotation time of 

doctor (s/each pair)

Time required for each 

sample (s/each pair) Total time (s)

Random selection for classification 339 2.2 0.01 339 (2.2  +  0.01)  =  749.19

MDAL for classification 118 2.2 0.77 118 (2.2  +  0.77)  =  350.46

Random selection for ordinal regression 735 2.9 0.06 735 (2.9  +  0.06)  =  2175.6

MDAL for ordinal regression 146 2.9 3.4 146 (2.9  +  3.4)  =  919.8

Figure 8.  GUI of mammographic image annotation program.
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Appendix

Abbreviation

Notations

AL Active learning

SVM Support vector machine

SQC Sample query criteria

MLO The mediolateral view

CC The craniocaudal view

MDAL Mammographic diagnosis-based active learning

HOG Histogram of oriented gradient

TED Transductive experimental design

MAED Manifold adaptive experimental design

MQCAL Multiple query criteria active learning

ICS Integration criteria strategy

OVR One-versus-rest

CBA Classification uncertain area

CCA Classification compatible area

CNN Convolutional neural network

AUC Area under the ROC curve

ROC Receiver operating characteristic curve

MSE Mean squared error

MC Markov chain

DDSM Digital database for screening mammography

n The number of mammographic images

xi The ith mammographic image

r The number of categories

X The feature vector of x, X  =  ϕ(x)

p Number of feature values in X

Xk The kth feature values in feature vector X

πj The conditional probability P(y  =  j|X)

U(t) The subset of unlabeled samples in tth iteration

|.| The length of vector

u(t)
n

The nth mammographic image in unlabeled subset in tth iteration

t One iteration of AL process

x(t)
CC n

The nth mammographic image in CC view in tth iteration

x(t)
MLO n

The nth mammographic image in MLO view in tth iteration

ym The label of xm, ym  =  {1, −1} for a classification task or ym  =  {1,2,3,4,5} for an ordinal regres-

sion task

A(t) The subset of labeled mammographic images in tth iteration

a(t)
m

The mth mammographic image in labeled subset in tth iteration

c_n Number of images selected for labeling from unlabeled subset in every AL iteration

Q(t) Images selected for labeling from unlabeled subset in tth AL iteration

h(t) The learning model established by A(t) in tth AL iteration

hMLO The learning model established by images from MLO view

hCC The learning model established by images from CC view

y* The predicted result based on two-view

f (t)
k (·) The kernel function in this SQC that is used to calculate the score of
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